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Abstract. We use the idea of partial Gauss decomposition to study structures related to
U,(gl(n — 1)) inside U,(gl(n)). This gives a description ot/,(gl(n)) as an extension of

Uq(gl(7—\l)) with Zamolodchikov algebras. We describe the connection of this new realization
with form factors.

1. Introduction

The affine Kac-Moody algebrg, associated to a simple Lie algebgaadmits a natural
realization as a central extension of the corresponding loop algeRr&|[¢, t~1]. Drinfeld
gives a similar realization fot/, (§), which is called the Drinfeld realization [D1]. Faddeeyv,
Reshetikhin, Takhtajan and Semenov-Tian-Shansky [FRT, RS] present a realizalipy pf
to the quantum loop algebid, (g ® C[t, #~1]) using a solution of the Yang—Baxter equation
depending on a parametee C

R12(2) R13(zw) Ro3(w) = Ra3(w) R13(zw) R12(2)

whereR(z) is a rational function of with values in EndC" ® C"). An explicit identification
between the two realizations of the quantum affine algéhrg) for the casgy = gl(n) is
established [DF] by applying Gauss decomposition td toperators for the FRTS realization.

In this paper, we will use the idea of partial Gauss decomposition to study the structures
related toU, (g[(/n?l)) inside Uq(g/[(n\)). We show thaqu(g/[(n\)) can be described as an
extension o, (g[ﬁl)) with Zamolodchikov algebras, where the Zamolodchikov algebras

can be interpreted as certain intertwinerslﬂg(gla—\l)). The Zamolodchikov algebras are
used to derive structures related to form factors and related structures.

This paper uses partial Gauss decomposition in order to find new structures hidden inside
the affine quantum groups. This method is related to many aspects of the theory of affine
quantum groups [Di2, MJ, M] and physics [Sm]. The meaning of this method can be explained
using the method of the twisting of Drinfeld [D2, KT].
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2. Quantum algebral,(gl(n — 1)) € U,(gl(n)) and partial Gauss decomposition

Let V be C" with a fixed basis;, i = 1,...,n and E;; be the standard basis of E)
corresponding te;. Let R(z) be an element of E@” @ C") defined by

n n n _1
z—1 @ -9
R@ =) Ei®Ei+ ) Ei®E;———+ 3 EjQ@Ei_——"
i=1 i#] 972749 5 9" —q
i,jﬁl i,jﬁl
L -1
g —q)
+ Z E;® Eﬁm

i<j
i,j=1

whereg, z are formal variables. TheR(z) satisfies the Yang—Baxter equation ahid unitary,
namely
Ru(@)t =R

whereR»1(z) = P R12(z) P, whereP is the operator permuting the two component¥ @ V.
Faddeev, Reshetikhin and Takhtajan defined a Hopf algebra structureR(gingvhich

satisfies the Yang—Baxter equation. Reshetikhinand Semenov-Tian-Shansky obtained a central

extension of this algebra. The algebra defined withRlg above is isomorphic o, (gl(n)).

The central extension is incorporated in shifts of the parameter(z).

Definition 2.1. Uq(a(n)) is an associative algebra with generaton{$f;[¢m], m €
Z:\0, l;j[O],ljj.[O], 1<j<i<nl Letll.i;(z) = Y% E[+m]z", where//;[0] =

m=0"ij
I;[0]=0forl<j>i<n. LetL*(z) = (lij;(z));szl. Then the defining relations are the
following:

15 1011;10] = I [0)[0] = 1
2\ 7+ + _ g+ + z
R (w) LE@)LEw) = LEw)LE@)R (w)

L 2
R (w—) Li(@)Ly () = L; w)LI@)R (w )

+

wherez. = zg*2. The expansion direction at(%) is chosen to be i, or % respectively
[DF].

The Hopf algebra is given by
ALi(Z) — Li(Zqi(1®§))®Li(Zq=F(§®l))

which is defined as
A(l[f(z)) — ;li(zqi(l‘@%)) ® 1135 (quz(%@l))
and its antipode is

S(L*(2)) = L* ()™~

The invertibilty of L= (z) follows from the properties tha,.’l,? are invertible and.* (0) are upper
triangular and lower triangular, respectively.
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L*(z) have the following unique decompositions:

1 0 N
e;l(z) kl (Z) O
Li(Z)Z eéfl(z) .
: . . . 0 . k,:,t(Z)
er1(m) ... e, 1@ ey, 1
1 f@ fiz@ ... fi@
[E1,@
0 1

These are used to establish the isomorphism between the Drinfeld realizatiUgle;E(;))
and its FRTS realization.
Similarly, we have the following partial Gauss decomposition:

Proposition 2.1. The operator.*(z) can be uniquely decomposed as

s I O\ (K@ 0 \(I f*@
L(Z)—<ei(z) 1)( 0 ki(z)>(o 1 >

whereK *(z) andk*(z) are (n — 1) x (n — 1) invertible matrix operatorse* (z) is a column
vector of sizé&n — 1) column andf*(z) is a row vector of siz¢n — 1).

Because& *(z) are invertible, the elemends (), f*(z) andk*(z) are uniquely expressed
in terms of the matrix coefficients d@f* (z).

We now have the following proposition.

Proposition 2.2. The algebra generated by entries of operator matricks (z) is
U,(gl(n — 1)).

We will follow the steps as shown in [DF] to find the complete commutation relations for
the operators in the above decomposition. For the calculation, we need the following formulae:
L*(2) =< K L Fore )

e= ()K= (2) (k¥ (z2) +e=(2)K=(2) f[F(2))

K (@)K (w) K (2)K (w) f (w) K@) f (@K (w) K@) f (@)K (w)f (w)
— K (2)e(w)K (w) K (2)D(2) K (2) f (@)e(w)K (w) K () f(@)Dw)
Li()La(w) = ( e(2)K (1)K (w) e()K (K (w) f (w) D(z)K (w) D (2)(K (w) f (w)) )
e(2)K (2)e(w)K (w) e(z)K (z) D (w) D(z)e(w)K (w) D (2)(D(w)K (w) f (w)
o1 (KF@Q 7+ Rk (@) e ) —fF @kt ()t
(L™(@) " = +o =1+ +o -1
—k=(z)" e~ (2) k=(z)
R(z/w) 0 0 0
z 0 =w A 7Z(qfq_1)B 0
Rip (_) = 2 t—wg zq 1 —wq
w 0 —w(ql—qfl) C iw_poQ
zqg t=wq zqg t—=wq
0 0 0 1
Ra(w/z) 0 0 0
1 —w —2(g—¢™H
w z 0 7w(q;q’1) C v _p oQ
wq—r—zq zq—wq~
0 0 0 1
% 0 — F(w)k(w)™L 0
_ 0 * 0 — fw)k(w)™t
L 1=
(La(w)) —k(w)~te(w) 0 k(w)~t 0

0 —k(w) " te(w) 0 k(w)™t
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WheI'EA = Zl;ﬁn E” ® Enn1 D = Zl#n Enn ® Ell C = Z}<l‘l+1 E”] ® E]n’ B =
2wt Ejn ® Eyj, R(z) is the R-matrix restricted to the subspaté® V', V' is generated on
the subspace generateddyi = 1,...,n — 1, D*(z) = (k¥(2) +e* (2) K*(2) f*(2)); and

Ly (w)~ lRZl( )Li(Z) Li(Z)R21( )Li( )t
Ly (w) R21<; ) L) = Lg(Z)R21<w )L ()™t
RZl(w )Lz (2)Li(w) = Li(w)L; (2)Ra1 <w_+_)

Li(w)~ 1R21<w )L (z) = L; (x)R21 (Z—+) L7 (w)
L@ @) TR (S) = R (=) (L) L5 @)™

Ly Ly (w) ' Ra (;—) = Rzl( ) (L7 )Ly
Using the same calculation technique as in [DF], we have the following lemma.
Lemma 2.3.
R(z/w)K (K5 (w) = K5 (w)K; (D) R(z/w)
K= (k™ (w) = k* (w)k™ (2)
R(z+/w_)K{(2)K5 (w) = K; (w)K; (2)R(z—/w+)
K (k™ (w) = k™ (w)k™ (w)

Kkt (w) =k (w)k*(2)
1

T W ) LR () = KERT (w) S 03
Z:F_wi Zi_wq:

:|: -1

K@) = ) Req™ /) KE )

KIm(2)R(zq* /w) Fa(w) = ;f,_l o K@
Fo+l _ -1

FQEwW) = " Fwk* (@)
gtz —

+ zq*? — +

F@FW) = — o Pk @

(z — wg?) E1(2) E2(w)R(z/w) = (24 — w) E2(w) E1(2)
(z¢% — w)F(2)F(w) = R(z/w)(z — wg?) F(w)F(2)
Ex(2)(Fi(w)) — Fi(w)E2(2) = (¢ — ¢~

x (a (%a;) k™ (wg?)K (wg?)™t =8 (%q) k+<qu)1<+<qu)l)

whereE(z) = e*(zq?) — e (2q% ), F(z) = f*(zq%) — f(zq?) ands(x) = Y, ., x™.

The algebra generated 8(z) or F(z) gives a realization of the Zamolodchikov algebra,
the formulation above is basically the same as in [Dil], where we study the Hopf algebra
extension of Zamolodchikov algebras. On the other hand, we can reformulate the definition
of U, (gl(n)) using the relations above.
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Definition 2.2. Let ZUR(n) be an algebra generated by matrix operatB(s), F(z), K*(z)
andk*(z) associated with the vector spate= C"~! respectively to/*, V, V ® V* and a
one-dimensional spadé. The commutation relations are defined as in the lemma above.

Theorem 2.4.ZUR(n) is isomorphic th(ﬁt(n)).

The proof follows the form of the above lemma and the similar argument in [DF].

From the point of view of [Dil], we can give a new Hopf algebra structure to this
formulation using the similar formulae. The important point is that from the definition we
can see thak (z) andF (z) are nothing but the intertwiners for the affine algeﬁgaﬁ[(n -1)
generated by the operatoks® (z) (k*(z))~1. The last formula of the commutation relations
implies constructions as in [M, Sm].

Let E(z) = E(z)K (zg°/%k~ (zq*/?), then we have the following.

Proposition 2.5.

(1—z/wg *)R(z/w)(z — wq?)
792 —w

=(qg—q H1-q7*) (%q“‘) K (wg™ K (wg ™)k (wg ) K (wg?)

(2% — w)E1(2) E2(w) = (z — wq?) Ea(w) E1(2)R(z/w)
(zg* — w)F Q)1 F2(w) = R(z/w)(z — wq?) Fa(w) F1(2)

2 . w .
(Fi(w)) — Fi(w)Ea(2) = (¢ — ¢~ H(L — )8 <?61‘> :

E2(2)

(Fi(w)) — F1(w) E2(z)

7z —wq

(11— z/wq E2(2) R(z/w) —
qc—w

The first formula above coincides with the spinor constructions of affine quantum groups
in [Di2].

The last three formulae above say that these operators generate an algebra which is almost
the same as the Zamolodchikov—Faddeev algebra used to describe the theory of form factors
[Sm]. Similarly we can also define a new operafoz) = (k(wg~2) 1K (wg~2)F(z).

This operator withE (z) generates another algebra similar to the definition above. From the
point of view of intertwiners as in [MJ], these operators can give a complete theory of form
factors, where one copy of the algebra is explained as the Zamolodchikov—Faddeev algebra
to define one model, and the other one is explained as a local operator, which commutes
with the first algebra up to certain functions. In a subsequent paper we will apply the same
method to Yangian and elliptic algebra [LKP, F], and give complete details to description of
the more general Zamolodchikov—Faddeev type of algebras, whose degeneration gives us the
corresponding results in this paper.
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